ALGEBRA QUALIFYING EXAM, JANUARY 2020

A) Attempt to solve 5 of these problems. (You can omit one problem.)
 B) Indicate clearly which problem you are omitting.

1. (a) Let G be a finite group such that for every positive integer n, G has at most one subgroup of order n. Show that G is cyclic. (Hint: You might first prove this when G is a p-group.)
(b) Find a group G of some order n and a positive integer d dividing n such that G has no subgroup of order d. (Justify your answer.)
2. Let G be a group of order $p^{2} q$, where p and q are primes with $p<q$. Prove that either G has a normal q-Sylow subgroup or G is isomorphic to the alternating group A_{4}.
3. (a) Let A and B be finite abelian groups. Suppose that for every positive integer n, the groups A and B have the same number of elements of order n. Prove that A and B are isomorphic.
(b) Let A and B be finitely generated abelian groups. Suppose that A is isomorphic to a subgroup of B, and B is isomorphic to a subgroup of A. Prove that A and B are isomorphic.
4. (a) Let k be a field and let $R=k+x^{2} k[x]$ be the subring of $k[x]$ consisting of polynomials $f=\sum a_{i} x^{i}$ with $a_{1}=0$ (no linear term). Show that every nonzero nonunit of R has a factorization into irreducible elements. Prove or disprove that R is a unique factorization domain.
(b) Suppose that R is a Noetherian integral domain and every finitely generated torsion-free R-module is free. Show that R is a principal ideal domain.

5 . Let R be a commutative Noetherian ring.
(a) Prove that if J is any non-prime ideal of R, then there exist $a, b \notin J$ such that $(J+R a)(J+R b) \subset J$.
(b) Using (a) and the Noetherian property, prove that for any ideal I of R, there exist prime ideals P_{1}, \ldots, P_{m} of R such that

$$
P_{1} P_{2} \cdots P_{m} \subset I
$$

(c) Prove that R has only finitely many minimal prime ideals (minimal with respect to set inclusion). (Hint: Look at the zero ideal).
6. Let R be a ring and $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ an exact sequence of left R-modules. Suppose N is another left R-module.
(a) Show that there is an exact sequence of abelian groups

$$
0 \rightarrow \operatorname{Hom}_{R}\left(N, M^{\prime}\right) \rightarrow \operatorname{Hom}_{R}(N, M) \rightarrow \operatorname{Hom}_{R}\left(N, M^{\prime \prime}\right)
$$

(b) Give an example for which $M \rightarrow M^{\prime \prime}$ is surjective but the corresponding homomorphism $\operatorname{Hom}_{R}(N, M) \rightarrow \operatorname{Hom}_{R}\left(N, M^{\prime \prime}\right)$ is not surjective.

